Efficient Preparation of Substituted 5,6,7,8-Tetrahydroquinolines and Octahydroacridine Derivatives

Dirk Sielemann, Ralf Keuper, and Nikolaus Risch*
Paderborn, Universität-GH, FB 13 - Fachbereich Chemie und Chemietechnik

Received April 16th, 1999
Dedicated to Prof. Dr. Karl Drexhage on the Occasion of his 65th Birthday
Keywords: Domino reaction, Mannich bases, Iminium salts, Tetrahydroquinolines, Octahydroacridines

Abstract

The reaction of the enamine 4 with different β-amino ketone hydrochlorides $\mathbf{3 a}-\mathbf{e}$ affords the diketones 5a-e which can be cyclized to the corresponding mono- and

disubstituted tetrahydroquinolines $\mathbf{6 a - e}$. Furthermore the preparation of the octahydroacridines $\mathbf{8 f}$ and $\mathbf{8 g}$ by using a straightforward multi step sequence is described.

Quinolines and their derivatives, especially the tetrahydroquinolines, occur in numerous natural products [1, 2]. Many tetrahydroquinoline derivatives show interesting physiological activities and have found attractive applications as pharmaceuticals and agrochemicals as well as being general synthetic building blocks [2]. Chiral 5,6,7,8-tetrahydroquinolines [3] are the most convenient starting points for the synthesis of the corresponding optically active $2,2^{\prime}$-bipyridines and 1,10phenanthrolines $[4,5]$. Furthermore tetrahydroquinolines and partially hydrogenated acridine derivatives have been prepared and studied with regard to their possible activity as acetylcholinesterase inhibitors [6] and their effects on the memory improvement of Alzheimer patients. In the last few years interest has been focused on $5,6,7,8$-tetrahydroquinolin- 8 -one derivatives since they play an important role as starting material for the synthesis of oligopyridines. Oligopyridines bearing 2,2'bipyridine, 2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine or 1,10-phenanthroline subunits are extremely versatile building blocks for the construction of metallo-supramolecular systems. Different syntheses have been developed for these heterocycles, but due to their great importance, the development of novel synthetic methods remains an active research area [7]. For this reason we were interested in simple approaches towards 5,6,7,8-tetrahydroquinoline derivatives [8].

Our studies in the field of ternary iminium salts led to the development of one pot reactions yielding a wide range of functionalized pyridines, bipyridines and terpyridines [9]. All these reactions are based on the ability of Mannich bases to form α, β-unsaturated ketones by thermally induced amine elimination. It is known that enamines as well as ketones are easily alkylated by these Michael acceptors to form 1,5-diketones [10] which can be converted to the corresponding pyridine derivatives
by treatment with ammonia. We chose to prepare several substituted 5,6,7,8-tetrahydroquinolines by treating the β-amino ketone hydrochlorides $\mathbf{3 a}-\mathbf{e}$ [11] with the pyrrolidine enamine of cyclohexanone 4. Heating a solution of the hydrochlorides $\mathbf{3 a}-\mathbf{e}$ in the presence of enamine 4 afforded the expected 1,5-diketones 5a-e which can be isolated in good to moderate yields.

${ }^{\text {a) }}$ The overall yield can be increased to 40% if the diketone $5 \mathbf{a}$ is not purified
Scheme 1 Preparation of diketones $\mathbf{5 a - e}$ and tetrahydroquinolines 6a-e

The final cyclization is achieved by refluxing the dicarbonyl compound 5 in the presence of an ammonia source (e.g. hydroxylammonium hydrochloride). The
isolation of the intermediate 1,5-diketone 5 is not necessary, and the cyclization of $\mathbf{5}$ can be carried out without further purification of the crude product. This procedure provides higher yields of the tetrahydroquinoline 6.

These results prompted us to develop a similar reaction sequence for the preparation of acridine derivatives. Instead of employing the enamine 4 we used the very reactive 1,3-cyclohexanedione 7 (see scheme 2). The reaction between Mannich base $\mathbf{3 f}$ and $\mathbf{3 g}$, respectively, and 7 was carried out in the presence of ammonium acetate so that the 1,5 -diketone is cyclized in situ to the 1,4-dihydropyridine and octahydroacridine derivative, respectively. After workup small amounts of 1,4-dihydropyridine are present which can be converted to the corresponding octahydroacridine derivative by stirring a solution of the crude product with SiO_{2} under an oxygen atmosphere. This simple procedure allows us to prepare the octahydroacridine $\mathbf{8 f}$ in 76% and $\mathbf{8 g}$ in 42% yield.

Scheme 2 Preparation of octahydroacridine derivatives $\mathbf{8 f}$ and $\mathbf{8 g}$

Our method is distinguished by its simplicity and high yields in comparison with known literature procedures [12]. It is noteworthy that the acridine derivative $\mathbf{8}$ is quite similar to known pharmacologically interesting acridine compounds [6]. Considerable attention has been focused on these heterocycles, because of their bactericidal, central stimulating [13], coronary dilating [14], antifibrillatory, spasmolytic and antihypertensive activity [15].

We thank the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft for the financial support of this work.

Experimental

All reactions were conducted under argon atmosphere unless otherwise indicated. Anhydrous solvents were distilled as follows: $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{CN}$ were destilled from $\mathrm{P}_{4} \mathrm{O}_{10}$; EtOH was distilled from Na . Melting points are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker ARX 200 spectrometer, using TMS as internal standard. Infrared frequencies are reported in units of cm^{-1}. MS data were obtained from a VG Fisons MD 800.

Preparation of the β-amino ketone hydrochlorides (3a-g)

The Mannich bases are synthesized according to the method described by Tietze/Kinast [11].

3-Dimethylamino-1-phenyl-propane-1-one hydrochloride (3a)
Prepared from $4.32 \mathrm{~g}(22.0 \mathrm{mmol})$ of acetophenone (1a) and $2.0 \mathrm{~g}(22.0 \mathrm{mmol})$ of N, N-dimethylmethylene ammonium chloride (2). Yield 4.54 g of colourless crystals (73\%), m.p. $152{ }^{\circ} \mathrm{C}$ [16]. $-{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=12.43$ (bs, 1H), $7.96\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 7.62-7.41(\mathrm{~m}, 3 \mathrm{H}), 3.74\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right)$, $3.60\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 2.86(\mathrm{~s}, 6 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=196.2$ (s), 135.8 (s), 134.52 (d), 129.30 (d), 128.7 (d), 53.1 (t), 43.7 (q), 34.2 (t). - IR (KBr) $v / \mathrm{cm}^{-1}=2541$, 2433, $1688,1470,1445,1336,1217,959,757,700$.
1-(4-Bromo-phenyl)-3-dimethylamino-propan-1-one hydrochloride (3b)
Prepared from 10.4 g (52.0 mmol) 4-bromoacetophenone (1b) and $4.65 \mathrm{~g}(52.0 \mathrm{mmol})$ of N, N-dimethylmethylene ammonium chloride (2). Yield 11.5 g of colourless crystals (76%), m.p. $193{ }^{\circ} \mathrm{C}$ [17]. - ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=$ 12.6 (bs, 1H), $7.91\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.68\left(\mathrm{~d},{ }^{3} J=8.6 \mathrm{~Hz}\right.$, 2 H), 3.78 (t, ${ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.54\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$), 2.89 (s, 3H). - IR (KBr) $v / \mathrm{cm}^{-1}=2993,2547,2433,1688,1579$, 1398, 1 222, $1067,964$.
1-Dimethylamino-4,4-dimethyl-pentan-3-one hydrochloride (3c)
Prepared from $19.8 \mathrm{~g}(0.20 \mathrm{~mol})$ of 3,3-dimethyl-2-butanone (1c) and $18.0 \mathrm{~g}(0.19 \mathrm{~mol})$ of N, N-dimethylmethylene ammonium chloride (2). Yield 27.1 g of colourless crystals (76\%), m.p. $175{ }^{\circ} \mathrm{C}$ [18]. $-{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=$ $12.65(\mathrm{bs}, 1 \mathrm{H}), 3.25\left(\mathrm{~m}_{\mathrm{c}}, 4 \mathrm{H}\right), 2.81(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 1.14$ $(\mathrm{s}, 9 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=212.5(\mathrm{~s})$, 53.2 (t), 43.6 (q), 32.3 (t), 26.74 (q). $-\mathrm{IR}(\mathrm{KBr}) \mathrm{v} / \mathrm{cm}^{-1}=$ 2977, 2577, 2474, 1 703, 1 465, 1 383, 1 093, 964.
3-Dimethylamino-2-methyl-1-phenyl-propane-1-one hydrochloride (3d)
Prepared from 2.7 g (20.0 mmol) propiophenone ($\mathbf{1 d}$) and $4.65 \mathrm{~g}(22.0 \mathrm{mmol})$ of N, N-dimethylmethylene ammonium chloride (2). Yield 3.7 g of colourless crystals (74\%), m.p. $165{ }^{\circ} \mathrm{C}$ [19]. $-{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=12.43$ (bs, 1H), $8.09\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 7.49\left(\mathrm{~m}_{\mathrm{c}}, 3 \mathrm{H}\right), 4.50\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.83$ $\left(\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.17\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}\right.$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=201.3$ (s), 134.7 (s), 134.7 (d), 129.6 (d), 129.3 (d), 59.2 (t), 45.6 (q), 42.5 (q), 38.0 (d), 18.9 (q). $-\mathrm{IR}(\mathrm{KBr}) ~ v / \mathrm{cm}^{-1}=2929$, 2686, 2619, 1688, 1465, 1 222, 979, 700.

3-Dimethylamino-1,2-diphenyl-propan-1-one hydrochloride (3e)
Prepared from $4.32 \mathrm{~g}(22.0 \mathrm{mmol})$ of benzylphenylketone (1e) and $2.0 \mathrm{~g}(22.0 \mathrm{mmol})$ of N, N-dimethylmethylene ammonium chloride (2). Yield 4.54 g of a white solid (72\%), m.p. $168{ }^{\circ} \mathrm{C}$ [9a]. $-{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=12.75$ (bs, 1H), $8.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.53-7.25(\mathrm{~m}, 8 \mathrm{H}), 5.89$ (dd, $\left.{ }^{3} J=7.8 \mathrm{~Hz},{ }^{4} J=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.12\left(\mathrm{dd},{ }^{2} J=12.7 \mathrm{~Hz}\right.$, $\left.{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.34\left(\mathrm{dd},{ }^{2} J=12.7 \mathrm{~Hz},{ }^{3} J=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.73(\mathrm{~s}, 6 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=197.4$
(s), 136.1 (s$), 135.2$ (s$), 134.4$ (d), 130.1 (d), 129.7 (d), 129.3 (d), 129.1 (d), 128.8 (d), 128.7 (d), 60.1 (t), 49.7 (d), 43.7 (q). $-\operatorname{IR}(\mathrm{KBr}) \mathrm{v} / \mathrm{cm}^{-1}=2950,2660,1678,1460,1383,1238$, 1145, 938, 767, 694.

2-Dimethylaminomethyl-cyclohexanone hydrochoride (3f)

 Prepared from $2.0 \mathrm{~g}(20.0 \mathrm{mmol})$ cyclohexanone and 1.86 g (20.0 mmol) of N, N-dimethylmethylene ammonium chloride (2). Yield 3.0 g of colourless crystals (83%), m.p. $159{ }^{\circ} \mathrm{C}$ [20]. - ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=3.69\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right)$, $3.15\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.34\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 2.06$ $\left(\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}\right), 1.92-1.70(\mathrm{~m}, 2 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=210.2(\mathrm{~s}), 57.4(\mathrm{t}), 47.3(\mathrm{q}), 45.6(\mathrm{q}), 42.7(\mathrm{~d}), 42.4$ (t$), 34.5(\mathrm{t}), 28.3(\mathrm{t}), 25.3(\mathrm{t})$.
2-Dimethylaminomethyl-cyclopentanone hydrochloride ($\mathbf{3 g}$)

Prepared from $1.49 \mathrm{~g}(20.0 \mathrm{mmol})$ cyclopentanone and $1.87 \mathrm{~g}(20.0 \mathrm{mmol})$ of N, N-dimethylmethylene ammonium chloride (2). Yield 2.84 g of colourless crystals (89\%), m.p. $150{ }^{\circ} \mathrm{C}$ [9b]. - ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=3.41$ $\left(\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}\right), 3.02\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.86\left(\mathrm{t},{ }^{3} \mathrm{~J}=4.43 \mathrm{~Hz}, 6 \mathrm{H}\right), 2.76\left(\mathrm{~m}_{\mathrm{c}}\right.$, $2 \mathrm{H}), 2.38\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.10\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 1.83\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right)$. - IR (KBr) $\mathrm{V} / \mathrm{cm}^{-1}=3015,2963,2853,2672,2595,2479,1732,1474$, $1408,1159,1115,1009,964,926,824$.

Preparation of the 1,5-Diketones (5a-e) (General Procedure)

The reactions were carried out by refluxing 0.1 mol of the pyrrolidine enamine $\mathbf{4}$ [21] with 0.1 mole of the Mannich base in 100 mL of dioxane for 16 h . After addition of 30 mL of water, the reaction mixture was refluxed for 1 h . The solution was cooled to room temperature, and additional 100 mL of water were added. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 40 \mathrm{~mL})$. The organic layer was washed with 20 mL of dilute $\mathrm{HCl}, 20 \mathrm{~mL}$ of water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation yielded brown oils which were purified either by Kugelrohr distillation or chromatography.

2-(3-Oxo-3-phenyl-propyl)-cyclohexanone (5a)

Prepared from $3.4 \mathrm{~g}(16.0 \mathrm{mmol})$ of Mannich base 3a and $2.4 \mathrm{~g}(16.0 \mathrm{mmol})$ of enamine 4 . Yield $1.43 \mathrm{~g}(39 \%)$ of an oil after chromatography on SiO_{2}, petroleum ether/EtOAc, 9:1. $-{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=7.96\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=1.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.48\left(\mathrm{~m}_{\mathrm{c}}, 3 \mathrm{H}\right), 3.03\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 2.34\left(\mathrm{~m}_{\mathrm{c}}, 3 \mathrm{H}\right)$, $2.08\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 1.85\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 1.66\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 1.39\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right)$. ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=213.6(\mathrm{~s}), 200.6(\mathrm{~s})$, 137.2 (s), 133.4 (d), 128.9 (d), 128.5 (d), 50.3 (d), 48.1 (t), $36.7(\mathrm{t}), 35.0(\mathrm{t}), 28.5(\mathrm{t}), 25.5(\mathrm{t}), 24.9(\mathrm{t})$. - IR (KBr) v / cm^{-1} $=2935,2852,1698,1678,1595,1585,1445,1367,1316$, $1274,1222,741,685$.

2-(3-Oxo-3-(4-brom-phenyl)-propyl)-cyclohexanone (5b)

Prepared from $2.6 \mathrm{~g}(8.9 \mathrm{mmol})$ of Mannich base 3b and $1.34 \mathrm{~g}(8.9 \mathrm{mmol})$ of enamine 4 . Yield $1.7 \mathrm{~g}(62 \%)$ of an oil after flash chromatography on SiO_{2}, petroleum ether/EtOAc, 3:1. - ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=7.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.02\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 2.40$ $\left(\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}\right), 2.10\left(\mathrm{~m}_{\mathrm{c}}, 3 \mathrm{H}\right), 1.83\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 1.65\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 1.47$ $\left(\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}\right) .-{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=212.6(\mathrm{~s})$, 199.6 (s), 135.9 (s), 132.2 (d), 130.2 (d), 128.5 (s), 50.348 d$)$, 42.7 (t), 36.8 (t). 35.1 t), 28.5 (t), 25.5 (t), 24.9 (t). - IR (KBr)
$\mathrm{v} / \mathrm{cm}^{-1}=2924,2551,1703,1683,1590,1460,1398,1072$. 1005, 824.

2-(3-Oxo-3-(tert-butyl)-propyl)-cyclohexanone (5c)
Prepared from $25.2 \mathrm{~g}(0.14 \mathrm{~mol})$ of Mannich base 3 c and $21.0 \mathrm{~g}(0.14 \mathrm{~mol})$ of enamine 4 . Yield $21.3 \mathrm{~g}(77 \%)$ of an oil after distillation, b.p. $175^{\circ} \mathrm{C} / 0,9 \mathrm{mbar} .-{ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=2.52\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 2.41-2.19(\mathrm{~m}, 3 \mathrm{H}), 2.19-$ $1.97(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.48-$ $1.24(\mathrm{~m}, 2 \mathrm{H}) 1.10(\mathrm{~s}, 9 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=216.5(\mathrm{~s}), 213.7(\mathrm{~s}), 50.7(\mathrm{~d}), 44.5(\mathrm{~s}), 42.6(\mathrm{t}) .35 .0$ (d), 34.5 (t), 28.5 (d), 26.8 (q), 25.9 (t$), 24.6$ (t). - IR (KBr) $\mathrm{v} / \mathrm{cm}^{-1}=2935,2862,1713,1481,1445,1367,1305,1129$, 1062, 985.

2-(2-Methyl-3-oxo-3-phenyl-propyl)-cyclohexanone (5d)

Prepared from $2.4 \mathrm{~g}(10.6 \mathrm{mmol})$ of Mannich base 3d and $1.51 \mathrm{~g}(10 \mathrm{mmol})$ of enamine 4 . Yield $1.1 \mathrm{~g}(46 \%)$ of an oil after distillation, b.p. $190^{\circ} \mathrm{C} / 0.8 \mathrm{mbar}$.

2-(3-Oxo-2,3-diphenyl-propyl)-cyclohexanone (5e)

Prepared from $2.14 \mathrm{~g}(7.4 \mathrm{mmol})$ of Mannich base 3 e and $1.12 \mathrm{~g}(7.4 \mathrm{mmol})$ of enamine 4. Yield $1.5 \mathrm{~g}(67 \%)$ of an oil which slowly crystallizes after distillation, b.p. $200{ }^{\circ} \mathrm{C} /$ 0.8 mbar. $-{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=8.03\left(\mathrm{~m}_{\mathrm{c}}\right.$, $2 \mathrm{H}), 7.63-7.20(\mathrm{~m}, 8 \mathrm{H}), 4.94\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right), 2.54-1.31(\mathrm{~m}, 9 \mathrm{H})$. $-{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=214.1(\mathrm{~s}), 213.9(\mathrm{~s})$, 200.4 (s), 198.1 (s , 140.6 (s), 138.5 (s), 136.6 (s$), 137.0$ (s$)$, 135.0 (s), 133.6 (d), 133.4 (d), 133.3 (s), 129.9 (d), 129.4 (d), 129.3 (d), 129.2 (d), 129.1 (d), 129.1 (d), 129.0 (d), 128.4 (d) 127.6 (d), 127.4 (d), 127.3 (d), 51.6 (d), 51.0 (d). 49.3 (d), 48.1 (d), 45.8 (t$), 42.8$ (t), 35.8 (t$), 35.3$ (t), 34.4 (t$), 35.6$ (t$)$, 28.7 (t , 28.6 (t), 25.5 (t).

Preparation of the 5,6,7,8-Tetrahydroquinolines (6a-e) (General Procedure)

The diketone (10.0 mol) and hydroxylammonium hydrochloride (10.0 mol) were refluxed in 10 mL of ethanol for 3 h . The reaction mixture was neutralized with $\mathrm{Na}_{2} \mathrm{CO}_{3}$. After addition of 50 mL of water the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Rotary evaporation yielded the crude products which were purified either by Kugelrohr distillation or chromatography.

2-Phenyl-5,6,7,8-tetrahydroquinoline (6a)

Prepared from $1.43 \mathrm{~g}(6.3 \mathrm{mmol})$ of diketone $5 \mathbf{5}$ and 0.44 g $(6.3 \mathrm{mmol})$ of hydroxyl-ammonium hydrochloride. Yield $0.55 \mathrm{~g}(42 \%)$ of an oil after distillation, b.p. $150-160^{\circ} \mathrm{C} /$ 0.3 mbar [10a]. $-{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=7.95$ $(\mathrm{mc}, 2 \mathrm{H}), 7.38\left(\mathrm{~m}_{\mathrm{c}}, 5 \mathrm{H}\right), 3.00\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.77(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.88\left(\mathrm{~m}_{\mathrm{c}}, 4 \mathrm{H}\right) .-{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=157.7(\mathrm{~s}), 155.1(\mathrm{~s}), 140.4(\mathrm{~s}), 137.9(\mathrm{~d}), 131.2(\mathrm{~s})$, 129.1 (d), 127.8 (d), 127.3 (d), 118.4 (d), 33.3 (t), 29.0 (t), 23.7 (t), 23.3 (t). - IR (KBr) $v / \mathrm{cm}^{-1}=2929,2862,1594$, $1564,1455,1253,1253,1129,1031,772,736,695$. - MS $(\mathrm{EI} / 70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%)=208(100)\left[\mathrm{M}^{+}\right], 195(11), 181(30), 154$ (3), 141 (6), 115 (10), 77 (9).

2-(4-Brom-phenyl)-5,6,7,8-tetrahydroquinoline (6b)

Prepared from $1.66 \mathrm{~g}(5.4 \mathrm{mmol})$ of diketone $\mathbf{5 b}$ and 0.38 g $(5.4 \mathrm{mmol})$ of hydroxylammonium hydrochloride. Yield
$0.70 \mathrm{~g}(45 \%)$ of a white solid after chromatography on SiO_{2}, petroleum ether/ $\mathrm{Et}_{2} \mathrm{O}, 5: 1$, m.p. $109^{\circ} \mathrm{C} .{ }^{-1} \mathrm{H} N M R(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=7.87\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 7.59\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 7.45(\mathrm{~s}, 2 \mathrm{H})$, $3.02\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.83\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.92\left(\mathrm{~m}_{\mathrm{c}}\right.$, $4 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=157.9(\mathrm{~s})$, 153.0 (s), 139.2 (s), 137.9 (d), 132.1 (d), 131.6 (s), 128.8 (d), 123.1 (s), 118.0 (d), 32.2 (t), 29.0 (t), 23.6 (t$), 23.2$ (t$).$ - IR $(\mathrm{KBr}) v / \mathrm{cm}^{-1}=2940,1579,1455,1072,1005,813$.

2-(tert-Butyl)-5,6,7,8-tetrahydroquinoline ($\mathbf{6 c}$)

Prepared from $21.3 \mathrm{~g}(0.11 \mathrm{~mol})$ of diketone 5 c and 7.3 g (0.11 mol) of hydroxylammonium hydrochloride. Yield $15.0 \mathrm{~g}(76 \%)$ of a liquid after distillation, b.p. $97^{\circ} \mathrm{C} 1 \mathrm{mbar}$ [22]. - ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=7.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.95\left(\mathrm{t},{ }^{3} J=6.3 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 2.77\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.89\left(\mathrm{~m}_{\mathrm{c}}, 4 \mathrm{H}\right), 1.39(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left.\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}\right)=166.5(\mathrm{~s}), 156.2(\mathrm{~s})$, 137.2 (d), 129.1 (s), 116.5 (d), 37.4 (s), 33.3 (t), 30.8 (q), 28.9 (t), 23.8 (t$), 23.3(\mathrm{t}) .-\mathrm{IR}(\mathrm{KBr}) \mathrm{v} / \mathrm{cm}^{-1}=2952,2852,1595$, $1568,1488,1468,1350,1132,823$.

2-Phenyl-3-methyl-5,6,7,8-tetrahydroquinoline ($\mathbf{6 d}$)

Prepared from $1.0 \mathrm{~g}(4.6 \mathrm{mmol})$ of diketone $\mathbf{5 d}$ and 0.88 g (4.6 mmol) of hydroxylammonium hydrochloride. Yield $0.34 \mathrm{~g}(33 \%)$ of an oil after chromatography on SiO_{2}, petroleum ether/Et 2 O, 2:1. - ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=$ $7.39\left(\mathrm{~m}_{\mathrm{c}}, 5 \mathrm{H}\right), 7.23(\mathrm{~s}, 1 \mathrm{H}), 2.94\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.76(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.24(\mathrm{~s}, 3 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=156.2(\mathrm{~s}), 154.8(\mathrm{~s}), 14.1(\mathrm{~s}), 139.6(\mathrm{~d}), 131(\mathrm{~s}), 129.4$ (d), 128.6 (d), 128.1 (s$), 127.0$ (d), 32.7 (t), 28.8 (t), 23.8 (d), 23.3 (d), 19.9 (q). $-\mathrm{IR}(\mathrm{KBr}) \mathrm{v} / \mathrm{cm}^{-1}=2929,2852,1564$, $1435,1429,1248,1021,783,741,705$.

2,3-Diphenyl-5,6,7,8-tetrahydroquinoline (6e)

Prepared from $1.5 \mathrm{~g}(5.0 \mathrm{mmol})$ of diketone 5 e and 0.36 g (5.0 mmol) of hydroxylammonium hydrochloride. Yield $0.5 \mathrm{~g}(54 \%)$ of white crystals after chromatography on SiO_{2}, petroleum ether/Et ${ }_{2} \mathrm{O}, 10: 1$, m.p. $105{ }^{\circ} \mathrm{C}$ [23]. - ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=7.38(\mathrm{~s}, 1 \mathrm{H}), 7.33\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 7.20$ $\left(\mathrm{m}_{\mathrm{c}}, 8 \mathrm{H}\right), 3.03\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.83\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $1.80\left(\mathrm{~m}_{\mathrm{c}}, 4 \mathrm{H}\right) .-{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=156.6$ (s), 154.7 (s), 140.9 (s), 140.6 (s), 139.6 (d), 133.8 (s), 131.2 (s), 130.4 (d), 130.0 (d), 128.6 (d), 128.3 (d), 127.8 (d), 127.3 (d), $33.0(\mathrm{t}), 28.9(\mathrm{t}), 23.7(\mathrm{t}), 23.3(\mathrm{t}) .-\mathrm{IR}(\mathrm{KBr}) \mathrm{v} / \mathrm{cm}^{-1}=$ 2924, 2857,1 543, $1445,1424,1248,1070,990,767,700$. $-\mathrm{MS}(\mathrm{EI} / 70 \mathrm{eV}) m / z(\%)=285(100)\left[\mathrm{M}^{+}\right], 256(13), 215$ (5), 165 (3), 133 (6), 127 (10), 114 (6), 77 (4).

Preparation of the Hexahydroacridinones ($8 \mathrm{ff}-\mathrm{g}$) (General Procedure)

A suspension of 5 mmol of the appropiate carbonyl compound, 5 mmol of the β-amino ketone hydrochloride and 15 mmol of ammonium acetate (anhydrous) in $25-30 \mathrm{~mL}$ of absolute ethanol were refluxed for $3-4 \mathrm{~h}$ under argon. After cooling to room temperature, the ethanol was removed in vacuo. The crude product was dissolved in a mixture of $35-40 \mathrm{~mL}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 15-20 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$ and 5 mL of 25% ammonia solution. The organic layer was separated, and the residual aqueos layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was dis-
solved in 25 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and circa 2 g of SiO_{2} are added. The mixture was stirred under an oxygen atmosphere over night and then filtered. The filter cake was washed thoroughly with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 10: 1$. The solvent was removed in vacuo, and the residue was purified by flash chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

3,4,5,6,7,8-Hexahydro-2H-acridin-1-one ($\mathbf{8 f}$)

Prepared from $5.0 \mathrm{~g}(21.6 \mathrm{mmol})$ of Mannich base $\mathbf{3 f}, 2.42 \mathrm{~g}$ (21.6 mmol) of 1,3-cyclohexandione (7) and 4.99 g $(64.8 \mathrm{mmol})$ of $\mathrm{NH}_{4} \mathrm{OAc}$. Yield $3.56 \mathrm{~g}(76 \%)$ of a yellow solid after flash chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, m.p. $96^{\circ} \mathrm{C}$ [12a]. $-{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=7.98(\mathrm{~s}$, $1 \mathrm{H}), 3.10\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.97\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.83$ ($\mathrm{t},{ }^{3} \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.68\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 2.19\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}\right), 1.91\left(\mathrm{~m}_{\mathrm{c}}\right.$, $4 \mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=198.7(\mathrm{~s}), 162.9$ (s), 160.9 (s), 135.6 (d), 131.5 (s$), 126.3$ (s$), 39.0$ (t$), 33.5$ (t$),$ $32.6(\mathrm{t}), 28.7(\mathrm{t}), 23.2(\mathrm{t}), 22.9(\mathrm{t}), 22.5(\mathrm{t})$. - IR (KBr) $\mathrm{v} / \mathrm{cm}^{-1}$ = 3021,2 999, 2941, 2876, $2557,1998,1693,1635,1556$, 1425, $1363,1332,1284,801$.

1,2,3,5,6,7-Hexahydro-cyclopenta[b]quinolin-8-one ($\mathbf{8 g}$)

Prepared from $680 \mathrm{mg}(3.84 \mathrm{mmol})$ of Mannich base $\mathbf{3 g}$, 430 mg (3.84 mmol) of 1,3-cyclohexandione (6) and 887 mg $(11.52 \mathrm{mmol})$ of $\mathrm{NH}_{4} \mathrm{OAc}$. Yield $304 \mathrm{mg}(42 \%)$ of a white solid after flash chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, m.p. $59{ }^{\circ} \mathrm{C}$ [12a]. $-{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=8.63(\mathrm{~s}$, $1 \mathrm{H}), 2.88(\mathrm{mc}, 6 \mathrm{H}), 2.51\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.02\left(\mathrm{~m}_{\mathrm{c}}, 4 \mathrm{H}\right)$. $-{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=198.4(\mathrm{~s}), 171.1(\mathrm{~s})$, 162.4 (s), 136.1 (s$), 130.6$ (d). 126.4 (s), 38.9 (t), 35.0 (t), $32.8(\mathrm{t}), 30.5(\mathrm{t}), 23.3(\mathrm{t}), 22.4(\mathrm{t}) .-\mathrm{IR}(\mathrm{KBr}) \mathrm{v} / \mathrm{cm}^{-1}=2939$, $1690,1602,1408,1360,1210,924$.

References

[1] J. P. Michael, Nat. Prod. Rep. 1997, 14, 605
[2] M. Balasubramanian, J. G. Keay in: Comprehensive Heterocyclic Chemistry II, A. R. Katritzky, C. W. Rees, E. F. V. Scriven, Eds., Pergamon Press, Oxford 1996, Vol. 5, Chapter 5.06, 245
[3] G. Chelucci, S. Cossu, G. Scano, F. Soccolini, Heterocycles, 1990 31, 1397
[4] C. Botteghi, A. Schionato, G. Chelucci, H. Brunner, A. K. Kurzingen, U. Obermann, J. Organomet. Chem. 1989, 370, 17
[5] C. Rosini, C. Bertucci, D. Pini, P. Salvadori, F. Soccolini, G. Delogu, J. Chem. Soc., Chem. Commun. 1983, 287
[6] F. Gatta, M. R. Del Giudice, M. Pomponi, M. Marta, Heterocycles 1992, 34, 991; HP-029 (9-amino-1,2,3,4-tetrahy-droacridin-1-ol) and HP-128 [(9-benzylamino-1,2,3,4-tet-rahydroacridin-1-ol) Hoechst-Roussel.
[7] (a) T. W. Bell, P. J. Cragg, A. Firestone, A. D.-I. Kwok, J. Liu, R. Ludwig, A. Sodoma, J. Org. Chem. 1998, 63, 2231; (b) V. Grosshenny, F. M. Romero, R. Ziessel, J. Org. Chem. 1997, 62, 1491
[8] R. P. Thummel, Synlett 1992, 1; A. P. Marchand, Aldrichimica Acta 1995, 28, 95
[9] (a) R. Keuper, N. Risch, U. Flörke, H.-J. Haupt, Liebigs Ann. 1996, 705; (b) R. Keuper, N. Risch, Liebigs Ann. 1996, 717; (c) R. Keuper, N. Risch, Eur. J. Org. Chem. 1998, 2609
[10] (a) N. S. Gill, K. B. James, F. Lions, K. T. Potts, J. Am. Chem. Soc. 1952, 74, 4923; (b) M. v. Strandtmann, M. P. Cohen, J. Shavel, J. Am. Chem. Soc. 1965, 30, 3241; (c) H.
J. Roth, R. Troschütz, Arch. Pharm. 1977, 310, 48; (d) R. Troschütz, H. J. Roth, Arch. Pharm. 1978, 311, 400; (e) H. J. Roth, E. Schumann, Arch. Pharm., 1970, 303, 268.
[11] G. Kinast, L. F. Tietze, Angew. Chem. 1976, 88, 261
[12] (a) C. Ruangsiyanand, H. J. Rimek, F. Zymalkowski, Chem. Ber. 1970, 103, 2403; (b) T. W. Bell, Y.-M. Cho, A. Firestone, K. Healy, J. Liu, R. Ludwig, S. D. Rothenberger, Organic Synth. Coll. Vol. VIII 1990, 69, 226
[13] T. Nagakome, Ger. Offen. 2. 103, 805; ref. in Chem. Abstr. 1971, 75, 98464
[14] Adalat ${ }^{\circledR}$ [Bayer AG]
[15] F. Bossert, Ger. Offen. 2. 003. 148; ref. in Chem. Abstr. 1971, 75, 98464
[16] A. B. Daruwala, J. E. Gearien, W. J. Dunn, S. P. Benoit, L. Bauer, J. Med. Chem. 1974, 8, 819
[17] A. F. Casy, J. L. Myers, J. Chem. Soc. 1965, 4092
[18] A. F. Casy, R. R. Ison, Tetrahedron 1969, 25, 641
[19] U. Westerwelle, A. Esser, N. Risch, Chem. Ber. 1991, 124, 571
[20] F. F. Blicke, F.J. Mc Carty, J. Org. Chem. 1959, 24, 1069
[21] G. Stork, A. Brizzolora, H. Landesman, J. Szmuskovicz, R. Terrell, J. Am. Chem. Soc. 1963, 85, 207
[21] G. Chelucci, S. Cossu, F. Soccolini, J. Heterocycl. Chem. 1986, 23, 1283
[23] E. C. Taylor, J. E. Macor, L. G. French, G. Larry, J. Org. Chem. 1991, 56, 1807

Address for correspondence:
Prof. Dr. N. Risch
Fachbereich Chemie und Chemietechnik
der Universität-GH Paderborn
Warburger Str. 100
D-33098 Paderborn
Fax: Internat. code (0) 5251-60-3245
e-Mail: nr@chemie.uni-paderborn.de

